Synthetic diamond based dosimetric systems for radiation therapy techniques

Maria Daniela Falco

PhD student
Department of Industrial Engineering
University of Rome "Tor Vergata"

Medical Physicist
Tor Vergata University General Hospital, Rome, Italy
daniela.falco@ptvonline.it
Outline

- Introduction
- SCDD dosimeter (PTW microDiamond)
- Novel in-vivo dosimeter
- 2D array dosimeters
- Conclusions
Outline

- Introduction
- SCDD dosimeter (PTW microDiamond)
- Novel in-vivo dosimeter
- 2D array dosimeters
- Conclusions
Dose measurements for radiotherapy

Measurements of the delivered dose in water are routinely performed in Radiotherapy wards:

- Treatment Planning System (TPS) commissioning
- Beam quality control

The quantity to be measured is the absorbed dose in water:

Energy per unit mass deposited in water by the radiation

\[D_W = \frac{\Delta E_W}{\Delta m} \]
Dose measurements for radiotherapy

An ideal dosimeter should:

- measure the dose in water independently from the energy spectrum: it should have the same “energy response” as water
- not modify the radiation field: same interaction with radiation as water
- be small (small field dosimetry capability)
Dose measurements for radiotherapy

Reference dosimeters
Ionization Chambers
- Low sensitivity per unit volume
- High voltage
- Polarity correction needed
- Pressure and temperature correction needed
- Stopping power ratio correction needed (electrons)

Silicon diodes
- Small size
- Not “water equivalent”
- High energy dependence

Different dosimeters are needed depending on the utilized beam
Diamond properties

Diamond Properties

- HARDNESS: 9000 Kg/mm² (the highest)
- BAND-GAP: 5.5 eV
- YOUNG’S MODULES: 1012 N/m² (the strongest)
- FRICTION: 0.05 (the lowest)
- THERMAL CONDUCTIVITY: 20 W/cm K (5 times Cu)
- ELECTRICAL RESISTIVITY: 10^{16} Ωcm
- ELECTRICAL BREAKDOWN: 10^7 V/cm (30 times GaAs)
- ELECTRON, HOLE MOBILITY: >2000 cm²/V s
- OPTICAL ABSORPTION: transparent from IR to IV (5.4 eV)
- MELTING POINT: 3350 °C
- RADIATION HARDNESS: very high
- CHEMICAL REACTIVITY: extremely low

Diamond applications

- Radiation detectors
 - Particle detectors
 - E-UV, V-UV sensors
 - Soft-X sensors
- Transistors
 - Fast FET
 - High power FET
- Quantum computing
- Chemical sensors
- Optical windows
- Biological application
- Cold cathodes / field emitters
- Heat spreaders
Diamond properties compared to Si

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Diamond</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandgap</td>
<td>1.12 eV</td>
<td>5.47 eV</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>2.33 g cm(^{-3})</td>
<td>3.52 g cm(^{-3})</td>
<td></td>
</tr>
<tr>
<td>Atomic Number</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Breakdown field</td>
<td>0.3 MV/cm</td>
<td>10 MV/cm</td>
<td></td>
</tr>
<tr>
<td>(v_{\text{sat}}) (electrons)</td>
<td>0.86 x 10(^7) cm/s</td>
<td>2 x 10(^7) cm/s</td>
<td></td>
</tr>
<tr>
<td>(v_{\text{sat}}) (holes)</td>
<td>-- x 10(^7) cm/s</td>
<td>0.8 x 10(^7) cm/s</td>
<td></td>
</tr>
<tr>
<td>Mobility (e(^-))</td>
<td>1450 cm(^2) V(^{-1}) s(^{-1})</td>
<td>4500 cm(^2) V(^{-1}) s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Mobility (holes)</td>
<td>480 cm(^2) V(^{-1}) s(^{-1})</td>
<td>3800 cm(^2) V(^{-1}) s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\rho_{\text{int}})</td>
<td>2.3 x 10(^5) (\Omega) cm</td>
<td>> 10(^{11}) (\Omega) cm</td>
<td></td>
</tr>
<tr>
<td>Displacement E</td>
<td>25 eV</td>
<td>35-48 eV</td>
<td></td>
</tr>
<tr>
<td>Specific sensitivity</td>
<td>640 nC Gy(^{-1}) mm(^{-3})</td>
<td>240 nC Gy(^{-1}) mm(^{-3})</td>
<td></td>
</tr>
</tbody>
</table>

Effects on dosimetric properties
- Z=6: weak energy dependence
- Wide gap: low leakage current
- High energy displacement threshold: high radiation hardness
- Density:
 - specific sensitivity about 7000 times higher than air
 - small size dosimeters
 - high spatial resolution
Energy dependence

Energy Response and tissue equivalence: scattering and absorption properties should match those of water for a given radiation

Relative mass absorption coefficient

- Photoelectric effect is dominant at low energy and proportional to Z^3

- High Z results in an overestimation of dose at low-energy (scattered) radiation

Electron stopping power ratios

- Diamond / H$_2$O ratio is approximately constant in the whole range

- Good energy response at high energies
- No corrections needed for electrons
In summary, why a diamond dosimeter?

<table>
<thead>
<tr>
<th>Detector</th>
<th>Size for same response</th>
<th>Spatial Resolution</th>
<th>Energy dependence: Low energy</th>
<th>Energy dependence: High energy</th>
<th>Beam quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air filled Ionization Chamber</td>
<td>1</td>
<td>medium</td>
<td>excellent</td>
<td>corrections needed</td>
<td>Different ICs for photons, electrons and protons</td>
</tr>
<tr>
<td>Si-Diode</td>
<td>18000 smaller</td>
<td>excellent</td>
<td>bad</td>
<td>medium</td>
<td>Different Si-Ds for photons and electrons (no protons)</td>
</tr>
<tr>
<td>Diamond</td>
<td>7000 smaller</td>
<td>excellent</td>
<td>good</td>
<td>good</td>
<td>One single dosimeter for all?</td>
</tr>
</tbody>
</table>

From the theoretical point of view, diamond is a very suitable material for dosimetry applications in radiation therapy.
Natural diamond

Natural diamond dosimeter (PTW-Freiburg)

- Good energy response
- Near water-equivalent
- Good sensitivity per unit volume
- Small size

Drawbacks

- Limited availability (!)
- High cost
- Low reproducibility (!)
- Dose rate dependence
- LET dependence in proton dosimetry
Introduction

SCDD dosimeter (PTW microDiamond)

Novel in-vivo dosimeter

2D array dosimeters

Conclusions
SCDD: our device

Single crystal diamond grown by CVD microwave at the Rome Tor Vergata University Laboratories

SCDD: Single crystal diamond grown by CVD microwave at the Rome Tor Vergata University Laboratories.
PTW microDiamond T60019

Detectors

microDiamond

Highlights

- Worldwide first commercially available synthetic single crystal diamond detector for clinical radiation therapy
- Smallest sensitive volume (0.004 mm³) of all available detectors – perfect choice for small field dosimetry for electron, photon and proton beams
- High accuracy over a wide range of field sizes from 1 cm x 1 cm to 40 cm x 40 cm
- Significant advantages over commonly used silicon diode detectors: excellent radiation hardness, temperature independence; near-tissue equivalence; small directional dependence
- No high voltage required. Available for all connecting systems.

Type 60019

Developed by Marco Marinelli, Gianluca Verona-Rinati and their team at the Industrial Engineering Department of Rome Tor Vergata University, Italy

Commercialization – 01.08.2013

PTW-Freiburg leaflet: www.ptw.de
microDiamond

Synthetic Diamond Detector

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type No.</td>
</tr>
<tr>
<td>Design:</td>
</tr>
<tr>
<td>Measuring quantity:</td>
</tr>
<tr>
<td>Nominal sensitive volume:</td>
</tr>
<tr>
<td>Reference point:</td>
</tr>
<tr>
<td>Nominal response:</td>
</tr>
<tr>
<td>Detector bias:</td>
</tr>
<tr>
<td>Radiation quality:</td>
</tr>
<tr>
<td>Field size:</td>
</tr>
<tr>
<td>Connectors:</td>
</tr>
</tbody>
</table>
Commercial device presented for the first time at:

- AAPM 2013 conference (American Association of Physicist in Medicine)
- ESTRO 2014 conference (European Society for Radiotherapy and Oncology)
Pre-irradiation, stability and linearity

- **Pre-irradiation**: 0 – 5 Gy needed before daily use to reach a signal stability within ±0.5 %
- **Rise and decay times**: less than 0.1 s
- **Long term reproducibility**: 0.4% over 18 months
- **Dose linearity**: best fit with linear and allometric (Fowler) functions
- **Deviation from linearity**: about ±0.1%
Energy dependence: low energy

Response under low energy X-rays (100-280 KV) normalized to the response to ^{60}Co beam irradiation:

- SCDD response exhibits a very weak energy dependence at low energy (if any)
- This is obviously not the case for Si-D (response 5 times higher at 100 kV !)
Photons

- **PDDs**: SCDD vs PTW 31014 PinPoint in vertical orientation
- **Difference Plots**: PTW 31014 PinPoint – SCDD (SCDD with Tor Vergata PMMA housing)

Photons

- **Beam profiles**: SCDD vs PTW 31014 PinPoint in vertical orientation
- **Difference plots**: PTW 31014 PinPoint – SCDD (SCDD with Tor Vergata PMMA housing)
Electronic beams

No need of stopping power ratio correction of the as measured data from the SCDD
• The diamond dosimeter is recommended for an wide range of radiation quality and field sizes

Does it work reliably for proton therapy?
Proton therapy

- Proton therapy is a growing technique which make use of proton beams to irradiate tumors.
- The advantage of proton therapy is the ability to more precisely localize the delivered dose with respect to other external beam radiotherapy techniques.
Proton therapy

- Protons produce high local ionization density
- Solid state dosimeters can exhibit a strong energy dependence due to LET variation resulting in large error in dose determination
- Severe radiation damage reported for silicon diode dosimeters
- Plane parallel ionization chambers are recommended but they cannot be used for beam profile measurements

Proton therapy: linearity

- Good linear behavior: $R^2 = 1 \pm 10^{-6}$
- Deviations from linearity about $\pm 0.5\%$, well within experimental error
Proton therapy: Bragg peaks

14 x 14 cm2 square aperture

- Good agreement with Markus parallel plate ion chamber
- Differences in the peak to plateau ratio lower than 2%
Outline

- Introduction
- SCDD dosimeter (PTW microDiamond)
- Novel in-vivo dosimeter
- 2D array dosimeters
- Conclusions
Off line in-vivo dosimeter

Development and characterization of a novel prototype diamond cable free dosimeter for in-vivo applications.
Off line in-vivo dosimeter

Reading unit

Sensitive volume: $\approx 3.8 \times 10^{-3}$ mm3
Sensitivity: ≈ 1 nC/Gy
Off line in-vivo dosimeter

- Repeatability of the measurement: 3% for 49 consecutive irradiations.
- Fading effect: 1.5% after 30 min
- Good linearity with dose
Outline

- Introduction
- SCDD dosimeter (PTW microDiamond)
- Novel in-vivo dosimeter
- 2D array dosimeters
- Conclusions
Single crystal diamond based multi-pixel dosimeter

- Fabrication of a 3×3 diamond matrix
- New version of the dedicated readout chip
- Embedded in epoxy resin
- Developed new control software
- Tested under linac beams at PTV
Single crystal diamond based multi-pixel dosimeter

Dose-map acquired by the pixel detector for three different configuration of the multileaf collimator

Dose rate dependence (central pixel)

Linearity plot (the central pixel)

Equation \(y = a + b \times x \)

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>20.65757</td>
<td>10.24409</td>
</tr>
<tr>
<td>Slope</td>
<td>2.70425</td>
<td>0.04456</td>
</tr>
</tbody>
</table>

Equation \(y = a + b \times x \)

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Slope</td>
<td>1.41886</td>
<td>0.00718</td>
</tr>
</tbody>
</table>

Equation \(y = a + b \times x \)

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>20.65757</td>
<td>10.24409</td>
</tr>
<tr>
<td>Slope</td>
<td>2.70425</td>
<td>0.04456</td>
</tr>
</tbody>
</table>

Equation \(y = a + b \times x \)

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Slope</td>
<td>1.41886</td>
<td>0.00718</td>
</tr>
</tbody>
</table>
Conclusions

- **PTW microDiamond™ type 60019** is the first (and only) commercially available synthetic single crystal diamond dosimeter for clinical radiation therapy. It is based on a SCDD produced in Rome “Tor Vergata” University laboratories.

- **Improvements with respect** to existing dosimeters have been demonstrated in terms of energy dependence of the response and spatial resolution.

- **SCDDs can be used for relative dosimetry in a very wide range of beam qualities (including proton beams) and irradiation conditions.**

- **Future work:**
 - Development and characterization of an off-line in vivo dosimeter based on single crystal CVD diamond.
 - Single crystal diamond based multi-pixel dosimeter.
| **Partners** |
|-----------------|---------------------------------|
| **Università di Roma “Tor Vergata”** |
| INFN – Sezione Roma 2 |
| C. Di Venanzio |
| M. Marinelli |
| E. Milani |
| G. Prestopino |
| F. Pompili |
| A. Tonnetti |
| C. Verona |
| G. Verona Rinati |
| **Policlinico “Tor Vergata” Hospital** |
| • Radiotherapy electron beams (Elekta) |
| M. D. Falco |
| R. Santoni |
| P. Bagalà |
| **INFN - LNS** |
| • Radiotherapy proton beams |
| G. Cuttone |
| L. Raffaele |
| G.A.P. Cirrone |
| **LENA-Casaccia** |
| • 60Co and Monte Carlo simulations |
| M. Pimpinella |
| A. Guerra |
| A. Stravato |
| **Loma Linda University Medical Center** |
| • Radiotherapy proton beams |
| B. Patyal |
| A. Ghebremedhin |
| M. Anant |
| **“S. Filippo Neri” Hospital** |
| • Radiotherapy photon beams (Varian) |
| R. Consorti |
| A. Petrucci |
Recent papers

- M. Pimpinella et al. “A synthetic diamond detector as transfer dosimeter for D_w measurements in photon beams with small field sizes” Metrologia 49, (2012), S207

